===== Usage ===== To use ultrayolo in a project:: from ultrayolo import YoloV3 from ultrayolo import datasets from ultrayolo.losses import Loss image_shape = (256,256,3) max_objects = 100 anchors = datasets.load_anchors('the path of the anchors') classes = datasets.load_classes('the file of the classes') train_annotation_path = '' train_dataset = datasets.YoloDatasetMultiFile( train_annotation_path, image_shape, max_objects, 2, anchors, YoloV3.default_masks, len(classes) ) val_annotation_path = '' val_dataset = datasets.YoloDatasetMultiFile( val_annotation_path, image_shape, max_objects, 2, anchors, YoloV3.default_masks, len(classes) ) model = YoloV3(image_shape, max_objects, backbone='DarkNet', anchors=anchors, num_classes=len(classes), training=True) loss_fn = Loss(len(test_classes), test_anchors, test_masks, img_shape[0]) optimizer = model.get_optimizer('sgd', 1e-4) model.compile(optimizer, loss_fn, run_eagerly=False) history = model.fit(train_dataset, val_dataset, 5)